OIL AND GAS CONSERVATION COMMISSION

OF THE STATE OF MONTANA

HELENA

ANNUAL REVIEW FOR THE YEAR 1960 Volume 5

Relating To
OIL AND GAS

G. W. YODER, Chairman TED HAWLEY, Vice Chairman E. L. ANDERSON IKE W. TAYLOR ALLEN ZIMMERMAN

THE OIL AND GAS CONSERVATION COMMISSION OF THE STATE OF MONTANA

ADMINISTRATORS

JAMES F. NEELY EXEC. SECRETARY JOHN H. RISKEN ATTORNEY

ROBERT M. WATKINS
PETROLEUM ENGINEER

COMMISSIONERS

G. W. YODER, CHAIRMAN 215 E. MORRILL SIDNEY, MONTANA

TED HAWLEY, VICE-CHAIRMAN CONRAD, MONTANA

E. L. ANDERSON 210 2ND AVE. S. E. CUT BANK. MONTANA

IKE W. TAYLOR
BOX 349
LEWISTOWN, MONTANA

ALLEN ZIMMERMAN 450 D STREET POPLAR, MONTANA

Administrative Office	325 Fuller Avenue, Helena
Northern District Field Office	
Southern District Field & Tech. Office	
Sub-District Office	

ANNUAL REVIEW FOR THE YEAR 1960 Volume 5

INTRODUCTION

This is the Fifth Annual Review of drilling and producing operations in Montana oil fields. A review for the year 1959 was not published; however, most of the drilling and producing statistics for the year 1959 are included within the review. It is the Commission's intention to continue this publication on an annual basis.

A comparison of previously published reserve data has been omitted because much of the basic data has been revised. The primary recovery factor for many fields has been revised downward to conform more closely with actual production trends. The initiation of secondary recovery operations will eventually result in a higher ultimate recovery from many fields. Therefore, the 255 million barrels of remaining primary reserves does not reflect the additional recovery that can be expected by secondary recovery operations. It is planned that subsequent annual reviews will tabulate both primary and secondary reserves. Secondary recovery reserves will not be added until secondary recovery is in actual operation.

Annual production for the year 1960 was approximately 30.2 million barrels. This again established another all time high. It is believed that new field discoveries, field extensions, and initiation of new secondary recovery projects has more than offset production. Several very interesting secondary recovery projects are now in the pilot stage of operation and several others are at an advanced stage of planning. It is believed that total State recoverable reserves will be increased substantially during the next few years as a result of secondary recovery operations.

The exploration outlook for 1961 appears very promising at the present time. The discovery of production from the Devonian formation at Tule Creek in Roosevelt County has created new interest in northeastern Montana. Exploration activity in Sheridan County, adjacent to the newly discovered Dwyer Field is expected to continue throughout the year. Completion of the new pipeline into northern Montana should provide a stimulus for increased exploration activity in that area for several years to come. Central Montana should continue to be fairly active during 1961, and recent interest in the Northern Powder River Basin may increase.

The basic information contained in this report has been obtained from information contained in the Commission files. It is planned to enlarge and modify the report year by year using the best available data.

, 1	1955	1956	1957	1958	1959	1960
Production, Northern Montana—Bbls. South Central—Bbls. Central—Bbls. Williston Basin—Bbls.	5,214,926	5,083,953	5,632,616	4,348,256	4,307,739	4,332,218
	1,896,630	2,585,437	2,867,658	3,590,554	4,514,034	3,087,871
	2,160,479	2,610,047	2,301,145	3,201,003	4,515,489	5,780,420
	6,382,391	11,480,124	16,320,543	16,816,816	16,497,964	17,039,406
TOTAL	15,654,426	21,759,561	27,121,962	27,956,629	29,857,226	30,239,915
No. of Producing Wells, Northern Montana	2,950	2,969	3,130	3,120	3,067	2,811
	94	96	103	102	100	96
	176	213	214	248	266	303
	194	306	376	446	455	497
TOTAL	3,414	3,584	3,823	3,916	3,888	3,707
Average Daily Production/Well—BOPD, Northern Montana	4.8	4.7	4.9	3.8	3.8	4.2
	55.3	73.5	76.3	96.4	123.7	88.1
	33.6	33.4	29.5	35.4	46.5	52.3
	90.1	102.5	118.9	103.3	99.3	93.9
STATE AVERAGE	12.6	16.5	19.4	19.6	21.1	22.3
Development Wells Drilled, Oil Wells	158	229	182	159	156	114
	21	6	17	7	12	4
	69	75	57	46	71	58
TOTAL	248	310	256	212	239	176
Exploratory Wells Drilled, Oil Wells	11	12	12	12	7	14
	4	0	2	2	6	3
	145	171	162	109	101	150
TOTAL	160	183	176	123	114	167
TOTAL WELLS DRILLED TOTAL FOOTAGE DRILLED AVERAGE DEPTH ALL WELLS	408	493	432	335	353	343
	1,873,835	2,465,821	2,108,462	1,700,404	1,627,574	1,655,172
	4,590	5,000	4,880	5,106	4,611	6,811

OIL AND GAS DISCOVERIES IN 1959

County	Field	Operator-Well Name and Location	Total Depth Ft.	Producing Formation	Initial Polis (B/D)	Initial Production Oil Gas (B/D) (MCF)
Chouteau	Unnamed	Northern Nat., Federal 1-C, 8-25N-17E	1,957	Eagle	1	2,520
Glacier	Unnamed	Kullberg Drlg., Tribal 3S-1, 36-36N-7W	3,665	Sun River	8	
Teton	Unnamed	Cardinal Petr., Campbell 1, 4-27N-5W	2,496	Sun River	15	
Toole	Unnamed	Cardinal Petr., Turan Morris 1, 13-36N-3E	2,817	Bow Island	ļ	1,200
Toole	Gold Butte	Cardinal Petr., Gordon Christian 1, 13-35N-2E	2,780	Swift	i	7,900
,		OIL AND GAS DISCOVERIES IN 1960		i		
Custer	Unnamed	Thos. F. Wheatley, Mont. Fed. 1, 34-2N-45E	2,892	Shannon	:	1,300
Musselshell	Keg Coulee	American Climax, DeJaegher 1, 31-11N-31E	4,635	Tyler "A"	177	i
Roosevelt	Tule Creek	Murphy Corp., E. O. Sletvold 1, 18-30N-48E	8,478	Nisku	476	
Rosebud	Hibbard	Sinclair, V. E. Kesterson 1, 34-10N-33E	5,240	Amsden	240	;
Sheridan	Dwyer	Mobil, Aloys Muller F-44-20-P, 20-32N-59E	12,033	Mission Canyon	51	i
Stillwater	Mackay	Northern Natural, Mackay 1-A, 14-6S-17E	4,116	Greybull	103	
Stillwater	Rapelje	Shoreline, C. F. Kirchner 1, 4-2N-20E	4,064	Eagle	i	840
Toole	Unnamed	Big West Oil, State 1, 36-33N-4W	2,241	Sawtooth		650

MONTANA GAS PRODUCTION DATA

Field	County	Producing Formation	1959 Production MCF	1960 Production MCF
Bears Den	Liberty	Kootenai	61,299	72,42 9
Big Coulee	Golden Valley	Lakota-Morrison	851,730	889,161
Bowdoin	Phillips & Valley	Colorado	3,618,401	5,075,532
Bowes	Blaine	Eagle	897,011	1,432,364
Box Elder	Blaine & Hill	Eagle	0	67,852
Cabin Creek	Fallon	Siluro-Ordovician	970,766	1,094,251
Cedar Creek	Fallon & Wibaux	Judith River & Eagle	5,058,820	4,572,964
Clarks Fork	Carbon	Lakota & Dakota	821,135	640,677
Cut Bank & Reagan	Glacier & Toole	Kootenai	10,167,463	11,231,488
Devon	Toole	Colorado	87,216	97,801
Dry Creek	Carbon	Cretaceous	1,488,715	1,700,909
Elk Basin	Carbon	Tensleep	814,540	762,145
Flat Coulee	Liberty	Kootenai	232,192	100,210
Golden Dome	Carbon	Greybull	33,439	13,534
Grandview	Liberty		278,904	361,794
Hardin	Big Horn	Frontier	41,819	45,289
Keith Block	Liberty	Sawtooth-Madison	1,249,426	1,391,779
Kevin-Sunburst	Toole	Kootenai	1,034,964	1,169,557
Pine	Dawson, Prairie, Fallon, Wibaux	Siluro-Ordovician	933,266	1,022,681
Plevna	Fallon	Judith River	211,657	201,676
Utopia	Liberty	Sawtooth-Ellis	1,231,099	543,487
Whitlash	Liberty	Colorado	887,554	1,180,833
Miscellaneous	•		<i>77</i> 8,844	1,017,537
TOTAL all Fie	lds		31,740,260	34,685,950

REFINING

	Year 1960 Total Bbls.
Big West Oil Company	775,18 9
Continental Oil Company	4,150,810
Diamond Asphalt Company	21 <i>7,7</i> 54
Farmers Union Central Exchange, Inc.	6, 7 93,8 72
Humble Oil & Refining Company	9,808,467
Jet Fuel Refinery	116,453
Phillips Petroleum Company	1,297,563
Texstar Corporation, Lodge Grass	17,303
Texaco, Inc.	595,133
Union Oil Company	1,162,473
TOTAL Bbls. Oil Refined in Montana (1960)	24,935,017

CRUDE OIL PRODUCTION-MONTH OF DECEMBER, 1960

AVERAGE DAILY PRODUCING RATE B.O.P.D. / WELL

TEN TOP FIELDS MILLIONS OF BARRELS

ASH CREEK

County: Big Horn

Discovery Well:

Name: McDermott-Shell, Elsie Berry No. 1

Location: NW SW Sec. 24, T. 58N., R. 85W., Sheridan County, Wyo.

Date Completed: April 26, 1952

Total Depth: 4799'

Initial Potential: 180 BOPD, 20 BWPD

Spacing Regulations:

330' from boundary of quarter-quarter section, and 1320' between wells. 75' tolerance for topo-

graphical conditions. The field boundaries are not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 4

Type of Trap: Anticline

Productive Formations: Shannon sandstone of Upper Cretaceous age.

Probable Drive Mechanism: Partial water drive and depletion drive.

BANNATYNE

County: Teton

Discovery Well:

Name: Genou Oil & Gas, Speer No. 1

Location: NW NW Sec. 8, T. 25 N., R. 1E.

Date Completed: July 21, 1927

Total Depth: 1580'

Initial Potential: 30 BOPD.

Deepest Well: Thomas Carney, Speer No. 2, T.D. 3115'

Spacing Regulations:

Center of 10 acre tracts, 50' tolerance for topographic conditions, delineated by Commission

Order No. 20-58.

Special Field Rules:

State-wide rules.

No. Producing Wells: 9

Type of Trap: Anticline

Productive Formations: Swift (Jurassic)

Probable Drive Mechanism: Water drive.

Secondary Recovery:

In-situ combustion or other forms of secondary recovery are approved. Majority of field has recently undergone a change of ownership. The new owners have not announced any definite plans.

BEARS DEN

County: Liberty

Discovery Well:

Name: Kenneth Frazier, Ritter-Govt. No. 1-X

Location: SW SE Sec. 12, T. 36N., R. 5E.

Completed: July 6, 1924 Total Depth: 3290'

Initial Potential: 5,000 MCFGPD

Deepest Well: Above well

Spacing Regulations:

330' from boundary of quarter-quarter section, and 1320' between wells. Tolerance of 75' for

topographic reasons. Field is not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 4

Type of Trap: Anticline

Productive Formations: Kootenai (Lower Cretaceous)

Probable Drive Mechanism: Depletion and gas cap drive.

BELFRY

County: Carbon

Discovery Well:

Name: Carter, Wheatley-Govt. No. 1

Location: NW NW Sec. 7, T. 9S., R. 22E.

Date Completed: March 22, 1958

Total Depth: 12,185'

Initial Potential: 196 BOPD, 1,121 MCFGPD

Diepest Well: Above well

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic reasons. Field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 1

Type of Trap: Stratigraphic

Productive Formations: Fuson (Lower Cretaceous)

Probable Drive Mechanism: Depletion and solution gas drive.

BIG COULEE

County: Stillwater and Golden Valley

Discovery Well:

Name: Texaco, NP Well No. D-1

Location: SW SW Sec. 31, T. 5N., R. 20E.

Date Completed: November 24, 1948

Total Depth: 4581'

Initial Potential: 24 MCFGPD

Deepest Well: Above well (Cambrian)

Spacing Regulations:

1320' from lease line, 3700' between wells, 75' tolerance for topographic reasons, not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 4

Type of Trap: Anticline

Productive Formations: Lakota (Lower Cretaceous). Morrison (Jurassic).

Probable Drive Mechanism: Water Drive

BIG WALL

County: Musselshell

Discovery Well:

Name: Texaco, NP No. 1

Location: SE NE NW Sec. 19, T. 10N., R. 27E.

Date Completed: July 1, 1948

Total Depth: 3139'

Initial Potential: 9 BOPD

Deepest Well: Texaco, Zoerb No. 1, Section 18, T. 10 N., R. 27 E.

Kibbey (Mississippian). T.D. 3617'

Spacing Regulations:

330' from lease line, 990' between wells, 75' tolerance for topographic reasons. Delineated by Order 12-54.

Special Field Rules:

State-wide rules.

No. Producing Wells: 25

Type of Trap: Structural

Productive Formations: Amsden (Pennsylvanian); Tyler (Mississippian).

Probable Drive Mechanism: Amsden, water drive; Tyler, depletion.

Water Disposal: A total of about 2,880,000 barrels of produced water has been injected into the Tyler "A" sand to December 31, 1960. Approximately 2520 BWPD was injected in December, 1960 at an average pressure of 1275 psig.

BLACKFOOT

County: Glacier

Discovery Well:

Name: Union Oil Co., Muntzing No. 1

Location: NE NW Section 11, T. 37N., R. 6W.

Date Completed: October, 1956

Total Depth: 3542'

Initial Potential: 15 BOPD

Deepest Well: Mobil, F-34-3-1. Madison (Mississippian). T.D. 3687'.

Spacing Regulations:

Center of 40 acres, 300' tolerance for topographic reasons, delineated by Order No. 3-57.

Special Field Rules:

Dual completions permitted upon approval by Petroleum Engineer.

No. Producing Wells: 16

Type of Trap: Structural and stratigraphic

Productive Formations: Cut Bank Sand (Cretaceous); Madison (Mississippian)

Probable Drive Mechanism: Partial water drive and depletion drive.

BLACKLEAF CANYON

County: Teton

Discovery Well:

Name: Northern Natural Gas, Blackleaf-Federal "A" No. 1

Location: NW SE NE Section 13, T. 26N., R. 9W.

Date Completed: May 22, 1958

Total Depth: 6323'

Initial Potential: 6 EOPD

Deepest Well: Above well

Spacing Regulations:

1320' from lease line, 3700' between wells, 75' tolerance for topographic reasons; not de-

lineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: Shut-in

Type of Trap: Stratigraphic

Productive Formation: Madison (Mississippian).

Probable Drive Mechanism: Unknown

BORDER

County: Toole

Discovery Well:

Name: Vanalta Oil Co., Ltd. No. 1

Location: L.S.D. 3, Sec. 4, T. 1N., R. 16W., Alberta, Canada.

Date Completed: September 25, 1929

Total Depth: 2477'

Initial Potential: 85 BOPD

Deepest Well: Empire State, Iowa Holding Co. No. 2. Jefferson (Devonian). T.D. 4920'.

Spacing Regulations:

220' from quarter-quarter section line and 430' between wells, 75' tolerance for topographic reasons. Field is delineated by Order No. 7-54.

Special Field Rules:

State-wide rules, except Rules no. 207, 219, 211, 223 and 224, which do not apply.

Type of Trap: Stratigraphic and structural.

Productive Formations: Cut Bank (Lower Cretaceous).

Probable Drive Mechanism: Water drive.

BOWDOIN

County: Phillips and Valley

Discovery Well:

Name: Martin well

Location: Section 18, T. 31 N., R. 35E.

Date Completed: 1913 Total Depth: 740'

Initial Potential: Unknown

Deepest Well: Texaco, Dupont No. 1 Sec. 8, T. 32N., R. 32E. Cambrian. T.D. 5855'.

Spacing Regulations:

One well to each quarter-section; at least 1000' from any lease boundary and 2000' between wells; field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 364

Type of Trap: Structural

Productive Formations: Bowdoin and Phillips sands in upper part of Colorado shale (Cretaceous)

Probable Drive Mechanism: Volumetric.

BOWES

County: Blaine

Discovery Well:

Name: California, Johnson & Hobson No. 1

Location: NE NE NE Sec. 9, T. 31N., R. 19E.

Date Completed: October 17, 1926

Total Depth: 4700'

Initial Potential: Show oil

Deepest Well: Northern Ordnance, Guertzgen No. 5, Sec. 1, T. 31N., R. 19E. Devonian. T.D. 5082'.

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic reasons; field delineated by Order No. 13-54.

Special Field Rules:

State-wide rules.

No. Producing Wells: 78

Type of Trap: Structural

Productive Formations: Gas-Eagle (Upper Cretaceous); Oil-Sawtooth (Jurassic).

Probable Drive Mechanism: Eagle, volumetric; Sawtooth, water drive.

Secondary Recovery: The operators are in the process of unitizing the Sawtooth formation for the purpose of initiating a water flood secondary recovery project.

BOX ELDER

County: Blaine

Discovery Well:

Name: Perkins, Stranahan No. 1

Location: NW NW NE Sec. 14, T. 32N., R. 17E.

Date Completed: June 17, 1931

Total Depth: 1276'

Initial Potential: 8000 MCFGPD

Deepest Well: Northern Ordnance, Morphey No. 1, Sec. 14, T. 32N., R. 17E. Madison (Mississip-

pian). T.D. 4212'.

Spacing Regulations:

Not applicable.

Special Field Rules:

Not applicable.

Type of Trap: Structural

Productive Formations: Eagle (Upper Cretaceous)

The Eagle sandstone is presently being used by The Moutana Power Company for a gas stor-

age reservoir.

BREDETTE

County: Roosevelt

Discovery Well:

Name: California Company, Elizabeth Grimm No. 1

Location: NE SE Sec. 13, T. 32N., R. 49E.

Date Completed: May 19, 1955

Total Depth: 9671'

Initial Potential: 140 BOPD, 31 BWPD, 1/8" ck.

Deepest Well: Above well. Winnipeg (Ordovician). T.D. 9671'.

Spacing Regulations:

80-acre spacing, permitted wells in the NE¼ and SW¼ of each quarter section, 75′ tolerance for topographic reasons. Field delineated by Orders No. 2-56 and 23-56.

Special Field Rules:

State-wide rules.

No. Producing Wells: Field abandoned.

Type of Trap: Structural

Productive Formations: Charles (Mississippian)

Probable Drive Mechanism: Water drive.

BREDETTE - NORTH

County: Daniels and Roosevelt

Discovery Well:

Name: California Company, Paulson No. 1

Location: NW SW Sec. 34, T. 33N., R. 49E.

Date Completed: May 27, 1956

Total Depth: 7475'

Initial Potential: 114 BOPD, 7/64" ck.

Deepest Well: Above well. Madison (Mississippian).

Spacing Regulations:

80-acre spacing, permitted wells in the NW¼ and SE¼ of each quarter section, 75' tolerance for topographic reasons. Field delineated by Order No. 20-56.

Special Field Rules:

State-wide rules.

No. Producing Wells: 2

Type of Trap: Structural

Productive Formations: Charles (Mississippian)

Probable Drive Mechanism: Water drive.

BRORSON

County: Richland Discovery Well:

Name: Sun-Phillips, Carl Dynneson No. 1

Location: SW NE Sec. 32, T. 24 N., R. 58E.

Date Completed: August 9, 1953

Total Depth: 12,671'

Initial Potential: 745 BOPD, 21 BWPD, 20/64" ck., from Red River formation.

Deepest Well: Sun-Phillips, Dennis Dynneson No. 1, Sec. 30, T. 24N., R. 58E. Red River (Ordovician). T.D. 13,050.

Spacing Regulations:

160-acre spacing, permitted well in the SW¼ of each quarter section, 75' tolerance for topographic reasons; field delineated by Order No. 20-55.

Special Field Rules:

State-wide rules.

No. Producing Wells: 4

Type of Trap: Probable combination of structural and stratigraphic

Productive Formations: Mission Canyon (Mississippian)

Probable Drive Mechanism: Combination water drive and depletion drive.

CABIN CREEK

County: Fallon Discovery Well:

Name: Shell, No. 22-33

Location: NE SE NW Sec. 33, T. 10N., R. 58E.

Date Completed: June 9, 1953

Total Depth: 9412'

Initial Potential: 1248 BOPD, 32 BWPD, flow into open line

Deepest Well: Shell, 21-17, Sec. 17, T. 10 N., R. 58E. Pre-Cambrian. T.D. 10,573'.

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic reasons: field limits considered same as unit area.

Special Field Rules:

State-wide rules.

No. Producing Wells: 104

Type of Trap: Structural

Productive Formations: Mission Canyon (Mississippian). Silurian-Ordovician.

Probable Drive Mechanism: Mission Canyon, water drive; Siluro-Ordovician, depletion drive.

Secondary Recovery: Pressure maintenance by water injection project is being expanded to include a larger portion of the field. An average of 134 BWPD was injected during June, 1960 at an average pressure of 2150 psig. Accumulative injections to December 1, 1960 were 148,923 barrels of water.

Water Disposal: Produced water has been injected into the Dakota formation since 1957. In November, 1960 an average of 5,110 BWPD was injected. A total of about 3,043,000 barrels have been injected up to December 1, 1960.

CAT CREEK

County: Garfield and Petroleum

Discovery Well:

Name: Frantz Corp., No. 1

Location: SW SE NW Sec. 21, T. 15N., R. 30E.

Date Completed: February, 1920

Total Depth: 998'

Initial Potential: 10 BOPD

Deepest Well: Arro-California, Charles No. 4, Sec. 21, T. 15N., R. 30E. Cambrian. T.D. 5705'

Spacing Regulations:

220' from lease line, 440' between wells; field delineated by Orders No. 14-54 and 17-55.

Special Field Rules:

State-wide rules.

No. Producing Wells: 96

Type of Trap: Structural

Productive Formations: Kootenai, Morrison, Swift

Probable Drive Mechanism: Depletion drive

Secondary Recovery: A portion of the field has been unitized and a water flood secondary recovery program is in progress. About 870,000 barrels have been injected into the First Cat Creek sand and 570,000 barrels injected into the Second Cat Creek sand since December, 1959. Production from the flood area has increased from 687 barrels of oil and 2,660 barrels of water in December, 1959 to 10,848 barrels of oil and 90,550 barrels of water in December, 1960.

CEDAR CREEK

County: Fallon and Wibaux

Discovery Well:

Name: Eastern Montana Oil & Gas Co.

Location: NE NE Sec. 20, T. 14N., R. 55E.

Date Completed: November, 1912

Total Depth: 2710'

Initial Potential: 2,500 MCFGPD (est.)

Spacing Regulations:

1200' from quarter section line and 2400' between wells, 75' tolerance for topographic reasons. Field delineated by Order No. 33-54.

Field defineated by Order No. 55-

Special Field Rules:

State-wide rules.

No. Producing Wells: 232

Type of Trap: Structural

Productive Formations: Judith River (Upper Cretaceous). Eagle (Upper Cretaceous).

Probable Drive Mechanism: Volumetric

CLARKS FORK

County: Carbon

Discovery Well:

Name: General Petroleum & Julius Peters, Govt.-McClellan No. 1

Location: NW NW Sec. 25, T. 9S., R. 22E.

Date Completed: December 16, 1944

Total Depth: 6531'

Initial Potential: 124 BOPD, 30% water

Deepest Well: British-American, Govt.-McClellan No. 1. Madison (Mississippian). T.D. 9446'

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells; 75' tolerance for topographic reasons. Field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 1

Type of Trap: Structural and stratigraphic

Productive Formations: Frontier (Upper Cretaceous)

Probable Drive Mechanism: Gas cap or depletion drive.

CLARKS FORK - NORTH

County: Carbon

Discovery Well:

Name: British-American, Montana State No. 1

Location: NE SE Sec. 16, T. 9S., R. 22E.

Date Completed: January 30, 1956

Total Depth: 10,877'

Initial Potential: 338 BOPD, 1681 MCFGPD, 18/64" ck.

Deepest Well: Above well. Madison (Mississippian)

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic reasons; not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 3

Type of Trap: Structural and stratigraphic

Productive Formations: Dakota (Lower Cretaceous), Lakota (Lower Cretaceous)

Probable Drive Mechanism: Gas cap and water drive.

CUPTON

County: Fallon

Discovery Well:

Name: Rothschild, Northwest Improvement No. 44-15

Location: SE SE Sec. 15, T. 9N., R. 59E.

Date Completed: August 30, 1955

Total Depth: 9785'

Initial Potential: 306 BOPD, 165 BWPD

Deepest Well: Above well. Red River (Ordovician)

Spacing Regulations:

80-acre spacing permitted wells in the SE¼ and NW¼ of each quarter section, 75′ tolerance for topographic reasons. Delineated by Order No. 31-55.

Special Field Rules:

State-wide rules.

No. Producing Wells: 2

Type of Trap: Structural

Productive Formations: Red River (Ordovician)

Probable Drive Mechanism: Water drive.

CUT BANK

County: Glacier and Toole

Discovery Well:

Name: Sand Point, Berger No. 1 (Gas well)

Location: SE SE NW Sec. 1, T. 35N., R. 5W.

Date Completed: 1926 Total Depth: 2978'

Initial Potential: 8,000 MCFGPD

Deepest Well: Union, Stufft 418-7. Cambrian. T.D. 5500'

Spacing Regulations:

320' from quarter-quarter section line, 650' between wells, fifth well in center of 40 permitted, 75' tolerance for topographic reasons. Field delineated by Orders No. 10-54 and 21-59.

Special Field Rules:

State-wide rules except Rules 207, 211, 219, 221, 223 and 224 do not apply.

No. Producing Wells: 1114

Type of Trap: Stratigraphic

Productive Formations: Kootenai (Lower Cretaceous); Madison (Mississippian)

Probable Drive Mechanism: Depletion drive

Secondary Recovery: Several pilot water floods have shown encouraging results. Field operators are in the process of forming several partial field units so that water flood projects can be expanded.

DEER CREEK

County: Dawson

Discovery Well:

Name: Texaco, No. 1 NP "G" (NCT-4)

Location: SW SW Sec. 23, T. 17 N., R. 53E.

Date Completed: August 29, 1952

Total Depth: 10,128'

Initial Potential: 191 BOPD

Deepest Well: Texaco, Ekland No. 1, Sec. 26, T. 17N., R. 53E. Red River (Ordovician). T.D. 10,228'

Spacing Regulations:

80-acre spacing permitted well in the NE¼ and SW¼ of each quarter section 75' tolerance for topographic reasons. Delineated by Order No. 23-55.

Special Field Rules:

State-wide rules.

No. Producing Wells: 6

Type of Trap: Structural

Productive Formations: Red River (Ordovician); Interlake (Silurian)

Probable Drive Mechanism: Water drive

Water Disposal: An average of 665 BWPD at a pressure of 243 psig. was injected during the last quarter of 1960. Approximately 374,000 barrels of water have been disposed of into the Dakota formation since March, 1957 when the project started.

DELPHIA

County: Musselshell

Discovery Well:

Name: Texota, Goffena No. 1

Location: NW NE Sec. 26, T. 9N., R. 27E. Date Completed: December 20, 1956

Total Depth: 6311'

Initial Potential: 124 BOPD

Deepest Well: Texota-Bradley, Goffena No. A-1. Charles (Mississippian). T.D. 6811'

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic reasons. Field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 2

Type of Trap: Structural

Productive Formations: Amsden (Pennsylvanian)

Probable Drive Mechanism: Water drive.

DEVILS BASIN

County: Musselshell

Discovery Well:

Name: Van Duzen Oil, No. 1

Location: NE SW NW Sec. 24, T. 11N., R. 24E.

Date Completed: December, 1919

Total Depth: 2110'

Initial Potential: 12 BOPD

Deepest Well: Clark Drilling Company, NP No. 1. Cambrian. T.D. 4081'

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic rea-

sons; field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 4

Type of Trap: Structural

Productive Formations: Heath (Upper Mississippian)

Probable Drive Mechanism: Depletion drive.

DEVON

County: Toole

Discovery Well:

Name: Minot, Shelby Holding Co. No. 1

Location: SW NE Sec. 18, T. 33N., R. 2E.

Date Completed: 1926 Total Depth: 1795'

Initial Potential: 3500 MCFGPD

Deepest Well: Above well. Madison (Mississippian)

Spacing Regulations:

1320' from lease line, 3700' between wells, 75' tolerance for topographic reasons. Field not de-

lineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 21

Type of Trap: Stratigraphic

Productive Formations: Blackleaf (Colorado Shale), (Lower Cretaceous)

Probable Drive Mechanism: Volumetric

DRY CREEK

County: Carbon

Discovery Well:

Name: Ohio Oil Company, NP No. 1

Location: 1940' N/S, 2900' W/E, Sec. 11, T. 7S., R. 21E.

Date Completed: March 31, 1929

Total Depth: 5772'

Initial Potential: 6500 MCFGPD (Frontier)

Deepest Well: Ohio Oil Company, NP No. 18, Sec. 3, T. 7S., R. 21E. Cambrian. T.D. 8882'

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic reasons; field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 4

Type of Trap: Structural

Productive Formations: Eagle (Upper Cretaceous) gas; Frontier (Upper Cretaceous) gas; Greybull

(Lower Cretaceous) oil; Prior (Lower Cretaceous) oil

Probable Drive Mechanism: Gas sands, volumetric; Oil sands, combination water and depletion drive.

DWYER

County: Sheridan

Discovery Well:

Name: Mobil, Muller No. F-44-20-P

Location: SE SE Sec. 20, T. 32 N., R. 59E.

Date Completed: January 8, 1960

Total Depth: 12,033'

Initial Potential: 51 BOPD, 49 BWPD

Deepest Well: Above well. Red River (Ordovician)

Spacing Regulations:

160 acre spacing, permitted well in the SE1/4 of each quarter section (temporary rules), 175' tolerance for topographic reasons, field delineated by Order No. 25-60.

Special Field Rules:

State-wide rules.

No. Producing Wells: 4

Type of Trap: Probably combination structural and stratigraphic

Productive Formations: Mission Canyon (Mississippian)

Probable Drive Mechanism: Water drive.

ELK BASIN

County: Carbon Discovery Well:

Name: Hurst No. 1

Location: Sec. 30, T. 58N., R. 99 W., Park County, Wyoming

Date Completed: 1915 Total Depth: 1402'

Initial Potential: 1000 BOPD (Frontier)

Spacing Regulations:

330' from quarter-quarter section, 1320' between wells, 75' tolerance for topographic condi-

tions. Field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 55

Type of Trap: Structural

Productive Formations: Frontier (Upper Cretaceous); Dakota (Lower Cretaceous); Embar (Permi-

an); Tensleep (Pennsylvanian); Madison (Mississippian)

Probable Drive Mechanism: Frontier, gravity drainage; Embar-Tensleep, gravity drainage; Madison,

water drive

Secondary Recovery: Frontier, crestal gas injection with sweet gas; Embar-Tensleep, full pressure

maintenance by crestal injection of inert gas.

ELK BASIN, NORTHWEST

County: Carbon Discovery Well:

Name: Sinclair Wyoming Oil Co., NW EB Unit No. 1

Location: SW NW Sec. 28, T. 9S., R. 23E.

Date Completed: July 22, 1947

Total Depth: 6795'

Initial Potential: 494 BOPD

Deepest Well: Pan American, B. L. Zaerr B-1. Madison (Mississippian). T.D. 6957'

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic rea-

sons; field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 11

Type of Trap: Structural

Productive Formations: Frontier (Upper Cretaceous). Madison (Mississippian)

Probable Drive Mechanism: Frontier, depletion drive; Madison,

Secondary Recovery: Water flood operations are being conducted in the Frontier formation. Approximately 450,000 barrels of water has been injected since October, 1957, date of first injection. The project has recently been enlarged and December, 1960 injections averaged about 1670 BWPD. The first increase in oil production was observed in December, 1960.

FERTILE PRAIRIE

County: Fallon

Discovery Well:

Name: Mon-O-Co, Ferguson-Goldin No. 1

Location: SE SW Sec. 18, T. 7N., R. 61E.

Date Completed: November 8, 1954

Total Depth: 9286'

Initial Potential: 132 BOPD

Deepest Well: McAlester Fuel, NP No. A-1. Winnipeg (Ordovician). T.D. 9684'

Spacing Regulations:

80-acre spacing, permitted wells in the NW¼ and SE¼ of each quarter section, 75' tolerance

for topographic reasons; field delineated by Order No. 3-56.

Special Field Rules:

State-wide rules.

No. Producing Wells: 1

Type of Trap: Structural

Productive Formations: Red River (Ordovician)

Probable Drive Mechanism: Water drive

FRANNIE

County: Carbon

Discovery Well:

Name: Pan American, Rosenberg C-1

Location: NW NE NW Sec. 25, T. 58 N., R. 98 W., Park County, Wyoming

Date Completed: February 28, 1928

Total Depth: 2612'

Initial Potential: 9 BOPD

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic rea-

sons. Field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 2

Type of Trap: Structural

Productive Formations: Tensleep (Pennsylvanian)

Probable Drive Mechanism: Combination water drive and gravity drainage.

GAGE

County: Musselshell

Discovery Well:

Name: Northern Ordnance, Morris No. 1

Location: SW SW Sec. 15, T. 9N., R. 26E.

Date Completed: September 9, 1943

Total Depth: 7495'

Initial Potential: 120 BOPD

Deepest Well: Above well. Madison (Mississippian)

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic reasons. Field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 2

Type of Trap: Combination structural and stratigraphic

Productive Formations: Amsden (Pennsylvanian)

Probable Drive Mechanism: Water drive.

GAS CITY

County: Dawson

Discovery Well:

Name: Shell, No. 33X-21

Location: NE NW SE Sec. 21, T. 14N., R. 55E.

Date Completed: June 4, 1955

Total Depth: 9596'

Initial Potential: 202 BOPD, 5 BWPD, 22/64" ck.

Deepest Well: Above well. Winnipeg (Ordovician)

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic reasons. Field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 10

Type of Trap: Structural

Productive Formations: Red River (Ordovician)

Probable Drive Mechanism: Water drive.

GLENDIVE

County: Dawson

Discovery Well:

Name: Texaco, NP "G" (NCT-1) No. 1

Location: NE NE Sec. 35, T. 15 N., R. 54E.

Date Completed: January 10, 1952

Total Depth: 9079'

Initial Potential: 254 BOPD

Deepest Well: Texaco, NP "G" (NCT-1) No. 2. Winnipeg (Ordovician). T.D. 10,537'

Spacing Regulations:

80-acre spacing, permitted well in the NE¼ and SW¼ of each quarter section, 75′ tolerance for topographic reasons. Field delineated by Order No. 27-55.

Special Field Rules:

State-wide rules.

No. Producing Wells: 11

Type of Trap: Stratigraphic and structural

Productive Formations: Stony Mountain-Red River (Ordovician)

Probable Drive Mechanism: Water drive

Water Disposal: Water disposal started March 25, 1956. About 595,000 barrels have been injected into the Dakota formation since that time. Approximately 785 BWPD were injected during the last quarter of 1960, at an average pressure of 868 psig.

GYPSY BASIN

County: Teton and Pondera

Discovery Well:

Name: Western Oils, Bills No. 1

Location: SW SE SW Sec. 31, T. 28N., R. 6W.

Date Completed: July 8, 1951

Total Depth: 3410'

Initial Potential: 50 BOPD

Deepest Well: Above Well. Madison (Mississippian)

Spacing Regulations:

Center of 40 acres, 150' tolerance for topographic reasons. Field delineated by Order No. 13-59.

Special Field Rules:

State-wide rules.

No. Producing Wells: 4

Type of Trap: Combination structural and stratigraphic

Productive Formations: Madison (Mississippian)

Probable Drive Mechanism: Combination water drive and depletion drive.

HARDIN

County: Big Horn

Discovery Well:

Name: Yellowstone Oil & Gas, Blair No. 1

Location: Sec. 10, T. 1S., R. 33E.

Date Completed: 1913
Total Depth: Unknown
Initial Potential: Unknown

Deepest Well: Daniels Petroleum Co., No. 1 Sec. 13, T. 1S., R. 33E. Madison (Mississippian). T.D.

4195'

Spacing Regulations:

1320' from lease line, 3700' between wells, 75' tolerance for topographic reasons, not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 41

Type of Trap: Stratigraphic

Productive Formations: Frontier (Cretaceous)

Probable Drive Mechanism: Volumetric.

HIBBARD

County: Rosebud

Discovery Well:

Name: Sinclair, Kesterson No. 1

Location: SE NW Sec. 34, T. 10N., R. 33E.

Date Completed: February 29, 1960

Total Depth: 5240'

Initial Potential: 240 BOPD

Deepest Well: Above well. Heath (Mississippian)

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic rea-

sons. Field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 1

Type of Trap: Unknown

Productive Formations: Amsden (Pennsylvanian)

Probable Drive Mechanism: Water drive.

IVANHOE

County: Musselshell

Discovery Well:

Name: Chicago-Republic, No. 1

Location: SW SE NE Sec. 17, T. 11N., R. 31E.

Date Completed: September 15, 1953

Total Depth: 5210'

Initial Potential: 92 BOPD (Morrison)

Deepest Well: Above well. Charles (Mississippian)

Spacing Regulations:

Center of 40-acre, 200' tolreance for topographic reasons. Delineated by Orders No. 13-56 and

7-60.

Special Field Rules:

State-wide rules.

No. Producing Wells: 22

Type of Trap: Structural and stratigraphic

Productive Formations: Morrison (Jurassic). Amsden (Pennsylvanian). Tyler (Mississippian)

Probable Drive Mechanism: Morrison and Tyler, depletion drive; Amsden, water drive.

KEG COULEE

County: Musselshell

Discovery Well:

Name: American-Climax Petr. Corp., DeJaegher No. 1

Location: SE NE Sec. 31, T. 11N., R. 31E.

Date Completed: April 1, 1960

Total Depth: 4635'

Initial Potential: 177 BOPD

Spacing Regulations:

80-acre spacing, pattern varies; 100' tolerance for topographic reasons. Field delineated by

Order No. 11-60.

Special Field Rules:

State-wide rules.

No. Producing Wells: 6

Type of Trap: Stratigraphic

Productive Formations: Tyler (Mississippian)

Probable Drive Mechanism: Depletion drive.

KEITH

County: Liberty
Discovery Well:

Name: Texaco, Cicon No. 1

Location: NE NW SW Sec. 29, T. 36N., R. 6E.

Date Completed: December 17, 1944

Total Depth: 3221'

Initial Potential: 3000 MCFGPD

Deepest Well: Montana Power, Sorrel-Govt. No. 1. Cambrian. T.D. 5015'

Spacing Regulations:

1320' from lease line and 3700' between wells, 75' tolerance for topographic reasons. Field not

delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 6

Type of Trap: Structural

Productive Formations: Bow Island (Cretaceous); Sawtooth-Madison (Jurassic-Mississippian)

Probable Drive Mechanism: Water drive.

KEVIN-SUNBURST

County: Toole

Discovery Well:

Name: Gordon Campbell-Kevin Syndicate, Goeddertz No. 1

Location: NE NE NE Sec. 16, T. 35N., R. 3W.

Date Completed: March 14, 1922

Total Depth: 2540'

Initial Potential: 10 BOPD

Deepest Well: Lee Edwards, Inland Empire No. 1. Pre-Cambrian. T.D. 4916'

Spacing Regulations:

9 wells per 40-acre tract, only 3 wells on any side of tract set back at least 220' from line, 75'

tolerance for topographic reasons. Field delineated by Orders No. 8-54 and 28-55.

Special Field Rules:

State-wide rules, except Rules No. 207, 211, 219, 221, 223 and 224 do not apply.

No. Producing Wells: 1193

Type of Trap: Stratigraphic

Productive Formations: Madison (Mississippian); Sawtooth (Jurassic); Sunburst (Cretaceous)

Probable Drive Mechanism: Depletion drive

Secondary Recovery: Two small pilot water floods are now in operation. Results of these floods are

yet inconclusive.

LAKE BASIN - NORTH

County: Stillwater

Discovery Well:

Name: Holland-American, Castle No. 1

Location: NW SE Sec. 22, T. 2N., R. 21E.

Date Completed: January 11, 1958

Total Depth: 4179'

Initial Potential: 480 MCFGPD, Eagle; 4500 MCFGPD, Frontier

Deepest Well: Superior, Copulos 71-22. Pre-Cambrian. T.D. 7929'

Spacing Regulations:

640-acre spacing, permitted well in the NW SE of each section, 75' tolerance for topographic

reasons. Delineated by Order No. 6-58.

Special Field Rules:

State-wide rules. Frontier and Eagle may be dually completed without provisions of Rule 219.

No. Producing Wells: Shut-in

Type of Trap: Structural

Productive Formations: Eagle (Cretaceous); Frontier (Cretaceous)

Probable Drive Mechanism: Unknown.

LITTLE BEAVER

County: Fallon

Discovery Well:

Name: Shell, Unit No. 23-13

Location: NE SW Sec. 13, T. 4N., R. 61E.

Date Completed: July 30, 1952

Total Depth: 8553'

Initial Potential: 313 BOPD, 33 BWPD

Deepest Well: Carter, NP No. 1, Sec. 19, T. 4N., R. 62E. Pre-Cambrian. T.D. 9676'

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic rea-

sons. Field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 15

Type of Trap: Structural

Productive Formations: Red River (Ordovician)

Probable Drive Mechanism: Water drive.

LITTLE BEAVER -- EAST

County: Fallon Discovery Well:

Name: Montana-Dakota Utilities, NP No. 1

Location: Sec. 17, T. 4N., R. 62E. Date Completed: October, 1952

Total Depth: 8186'

Initial Potential: 25 BOPD

Deepest Well: Shell, No. 14-34, Sec. 34, T. 5N., R. 61E. Red River (Ordovician). T.D. 8471'

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic reasons. Field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 11

Type of Trap: Structural

Productive Formations: Red River (Ordovician)

Probable Drive Mechanism: Water

Water Disposal: Commission has granted approval for water injection; however, the project is not

yet in operation.

MACKAY

County: Carbon and Stillwater

Discovery Well:

Name: Northern Natural Gas, Mackay No. 1-A

Location: NW SE Sec. 14, T. 6S., R. 17E.

Date Completed: May 20, 1960

Total Depth: 4116'

Initial Potential: 103 BOPD

Deepest Well: Above well. Morrison (Jurassic)

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic reasons. Field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 2

Type of Trap: Structural

Productive Formations: Greybull (Lower Cretaceous)

Probable Drive Mechanism: Unknown.

MELSTONE

County: Musselshell

Discovery Well:

Name: Amerada, Hougen No. 1

Location: SE SE Sec. 23, T. 10N., R. 29E.

Date Completed: October 18, 1948

Total Depth: 4228'

Initial Potential: 655 BOPD, ¾" ck.

Deepest Well: Amerada, Hougen No. 2. Sec. 23, T. 10N., R. 29E. Cambrian. T.D. 7626'

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic rea-

sons. Field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 8

Type of Trap: Structural and stratigraphic

Productive Formations: Tyler (Mississippian)

Probable Drive Mechanism: Depletion drive.

Water Disposal: Produced water was injected into the Tyler "B" zone from February, 1954 to May,

1958. A total of 1,056,000 barrels were injected before the injection well plugged.

MONARCH

County: Fallon

Discovery Well:

Name: Shell, NP 12-23

Location: Sec. 23, T. 9N., R. 58E. Date Completed: November 18, 1958

Total Depth: 9175'

Initial Potential: 218 BOPD, 13 BWPD

Deepest Well: Above well. Red River (Ordovician)

Spacing Regulations:

160-acre spacing, SW1/4 of each quarter section, 175' tolerance for topographic reasons. De-

lineated by Order No. 12-59.

Special Field Rules:

State-wide rules.

No. Producing Wells: 13

Type of Trap: Structural and stratigraphic

Productive Formations: Red River (Ordovician); Interlake (Silurian)

Probable Drive Mechanism: Depletion drive with partial water drive.

MOSSER

County: Yellowstone

Discovery Well:

Name: Tarrant, Mosser No. 2

Location: SW SW NE Sec. 26, T. 3S., R. 24E.

Date Completed: January 25, 1937

Total Depth: 1027'

Initial Potential: 60 BOPD

Deepest Well: Tarrant, Mosser No. 1, Sec. 26, T. 3S., R. 24E. Madison (Mississippian). T.D. 2568'

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic reasons. Order No. 21-56 establishes some exceptions.

Special Field Rules:

State-wide rules.

No. Producing Wells: 5

Type of Trap: Structural

Productive Formations: Dakota (Lower Cretaceous)

Probable Drive Mechanism: Water drive.

OUTLOOK

County: Sheridan

Discovery Well:

Name: Amerada, Tange No. 1

Location: Sec. 20, T. 36N., R. 53E. Date Completed: December 22, 1956

Total Depth: 9950'

Initial Potential: 2742 BOPD

Deepest Well: Amerada, A. Johnson No. 1, Sec. 33, T. 36N., R. 53E. Pre-Cambrian. T.D. 11,074'

Spacing Regulations:

160 acre spacing, permitted wells can be in either SW¼ or NE¼ of each quarter section, 175′ tolerance for topographic reasons. Delineated by Order No. 19-59A.

Special Field Rules:

State-wide rules.

No. Producing Wells: 11

Type of Trap: Stratigraphic and structural

Productive Formations: Silurian-Devonian. Red River (Ordovician)

Probable Drive Mechanism: Water drive

Water Disposal: Produced water disposal began January 12, 1960 into the Dakota formation. An average of 1030 BWPD was injected at an average pressure of 775 psig. during December, 1960. Accumulative water injections to January 1, 1961 were about 248,000 barrels.

PENNEL

County: Fallon Discovery Well:

Name: Shell, State No. 22X-36

Location: SE NW Sec. 36, T. 8N., R. 59E.

Date Completed: September 8, 1955

Total Depth: 9242'

Initial Potential: 205 BOPD, 39 BWPD

Deepest Well: Above well. Winnipeg (Ordovician)

Spacing Regulations:

80 acre, permitted wells in the NW¼ and SE¼ of each quarter section, 150' tolerance for topographic reasons. Delineated by Order No. 1-56.

Special Field Rules:

State-wide rules.

No. Producing Wells: 20

Type of Trap: Structural

Productive Formations: Lodgepole (Mississippian); Mission Canyon (Mississippian); Siluro-Ordovi-

cian.

Probable Drive Mechanism: Combination depletion drive and water drive

Water Disposal: Commission has granted approval to dispose of produced water by injection; how-

ever, the project is not yet in operation.

PINE

County: Fallon, Wibaux, Prairie and Dawson

Discovery Well:

Name: Shell, Pine Unit No. 32-30

Location: SW SW NE Sec. 30, T. 12N., R. 57E.

Date Completed: January 28, 1952

Total Depth: 9746'

Initial Potential: 467 BOPD, 148 BWPD

Deepest Well: Shell, 43-22A. Sec. 22, T. 11N., R. 57E. Pre-Cambrian. T.D. 10,414'

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells; 75' tolerance for topographic reasons. Field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 143

Type of Trap: Structural

Productive Formations: Silurian-Ordovician

Probable Drive Mechanism: Water drive.

Secondary Recovery: A partial pressure maintenance program was initiated March 10, 1959 by injecting water into the producing horizon. Commission has given approval to expand the project. A total of about 540,000 barrels of water have been injected into the Siluro-Ordovician reservoir.

Water Disposal: Produced water has been disposed of by injecting into the Dakota formation since October, 1958. A total of about 2,910,000 barrels had been injected to December 1, 1960. Average November, 1960 injection rates were 3770 BWPD.

PLEVNA

County: Fallon Discovery Well:

Name: F. H. Becker No. 1

Location: NE NE SE Sec. 28, T. 5N., R. 60E.

Date Completed: January 18, 1946

Total Depth: 1053'

Initial Potential: 300 MCFGPD

Deepest Well: Fallon, NP No. 7, Sec. 3, T. 5N., R. 59E. Judith River (Upper Cretaceous). T.D.

2240'

Spacing Regulations:

1200' from quarter section line, 2400' between wells, 75' tolerance for topographic reasons.

Field delineated by Orders No. 34-54 and 4-57.

Special Field Rules:

State-wide rules.

No. Producing Wells: 25

Type of Trap: Structural

Productive Formations: Judith River (Upper Cretaceous)

Probable Drive Mechanism: Water drive.

PONDERA

County: Teton

Discovery Well:

Name: Midwest Refining, Haber No. 1

Location: SE SE Sec. 17, T. 27N., R. 4W.

Date Completed: June, 1927

Total Depth: 2072'

Initial Potential: 3 BOPD, 3500 MCFGPD

Deepest Well: Wasatch Oil, Hirshberg No. 1. Sec. 23, T. 27 N., R. 4W. Pre-Cambrian. T.D. 5233'.

Spacing Regulations:

220' from quarter-quarter section line, 430' between wells, 75' tolerance for topographic rea-

sons. Delineated by Order No. 9-54.

Special Field Rules:

State-wide rules, except Rules No. 207, 211, 219, 221, 223, 224 do not apply.

No. Producing Wells: 326

Type of Trap: Structural and stratigraphic

Productive Formations: Madison (Mississippian)

Probable Drive Mechanism: Combination depletion drive with limited water drive.

POPLAR

County: Roosevelt

Discovery Well:

Name: East Poplar Unit No. 1. Murphy Corp.

Location: SW NE Sec. 2, T. 28N., R. 51E.

Date Completed: March 10, 1952

Total Depth: 9163'

Initial Potential: 233 BOPD

Deepest Well: Above well. Winnipeg (Ordovician)

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic reasons. Delineated by Order No. 7-55.

Special Field Rules:

State-wide rules.

No. Producing Wells: 93
Type of Trap: Structural

Productive Formations: Charles-Mission Canyon (Mississippian)

Probable Drive Mechanism: Water drive

Secondary Recovery: Partial pressure maintenance by water injection was started in September, 1956.

The project has since been expanded. Total water injections to January 1, 1961 were about 6,545,000 barrels. December, 1960 injections averaged about 6,450 BWPD.

Water Disposal: Excess produced water has been injected into the Dakota formation since September, 1957. A total of about 7,723,000 barrels have been injected to January 1, 1961. Average daily injections during December, 1960 were 3,260 BWPD.

POPLAR -- NORTHWEST

County: Roosevelt

Discovery Well:

Name: Ajax Oil, McGowan No. 1

Location: SE SW Sec. 10, T. 29N., R. 50E.

Date Completed: May 12, 1952

Total Depth: 6274'

Initial Potential: 75 BOPD, 25 BWPD

Deepest Weil: Carter, Harry Mason No. 1. Interlake (Silurian). T.D. 8392'

Spacing Regulations:

80-acre spacing; permitted wells in the NW½ and SE¼ of each quarter section, 75′ tolerance for topographic reasons. Field delineated by Order No. 18-55.

Special Field Rules:

State-wide rules. Order No. 18-55 lists special well completion practices to be followed.

No. Producing Wells: 4

Type of Trap: Structural

Productive Formations: Charles-Mission Canyon (Mississippian)

RAGGED POINT

County: Musselshell

Discovery Well:

Name: Texas, Manion No. 1

Location: SE SW Sec. 5, T. 11N., R. 30E.

Date Completed: January 4, 1948

Total Depth: 6312'

Initial Potential: 236 BOPD, 5% water.

Deepest Well: Above well. Cambrian

Spacing Regulations:

Center of 40 acres, 75' tolerance for topographic reasons. Delineated by Orders No. 15-54 and

8-59.

Special Field Rules:

State-wide rules.

No. Producing Wells: 10

Type of Trap: Structural and stratigraphic

Productive Formations: Kibbey and Tyler (Mississippian)

Probable Drive Mechanism: Kibbey, water drive; Tyler, depletion drive.

REAGAN

County: Glacier

Discovery Well:

Name: Reagan Associates, Tribal 194-1

Location: SE NE Sec. 22, T. 37N., R. 7W.

Date Completed: March 29, 1941

Total Depth: 3869'

Initial Potential: 6000 MCFGPD

Deepest Well: Union Oil, Blackfeet Tribal 194-12. Cambrian. T.D. 6258'

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic rea-

sons.

Special Field Rules:

State-wide rules.

No. Producing Wells: 50

Type of Trap: Structural

Productive Formations: Madison (Mississippian)

Probable Drive Mechanism: Combination gas cap and water drive

Secondary Recovery: Operators have commission approval to cycle produced gas for partial pressure

maintenance. Project is not yet in operation.

RED CREEK

County: Glacier

Discovery Well:

Name: G. S. Frary, Isabel Moberly No. 1

Location: SW SW Sec. 1, T. 37N., R. 5W.

Date Completed: January 16, 1958

Total Depth: 2656'

Initial Potential: 1500 MCFGPD

Deepest Well: Pardee-Inland Empire, McAlpine No. 1. Madison (Mississippian). T.D. 2990'

Spacing Regulations:

Center of 40 acres, 75' tolerance for topographic reasons. Delineated by Order No. 16-58.

Special Field Rules:

State-wide rules. Rule 219 waived.

No. Producing Wells: 15

Type of Trap: Structural and stratigraphic

Productive Formations: Cut Bank (Lower Cretaceous), Madison (Mississippian).

RAPELJE

County: Stillwater

Discovery Well:

Name: Shoreline Petroleum, C. F. Kirchner No. 1

Location: NE SW Sec. 4, T. 2N., R. 20E.

Date Completed: November 18, 1960

Total Depth: 4064'

Initial Potential: 840 MCFGPD

Deepest Well: Above well. Morrison (Jurassic)

Spacing Regulations:

1320' from lease line, 3700' between wells. 75' tolerance for topographic reasons. Field not de-

lineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: Shut-in

Type of Trap: Unknown

Productive Formations: Eagle (Cretaceous)

Probable Drive Mechanism: Unknown

RED STONE

County: Sheridan

Discovery Well:

Name: H. L. Hunt, Hagen No. 1

Location: NE NW Sec. 7, T. 34 N., R. 52E.

Date Completed: November 1, 1958

Total Depth: 10,700'

Initial Potential: 100 BOPD

Deepest Well: Above well. Cambrian.

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic rea-

sons. Field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 1

Type of Trap: Unknown

Productive Formations: Devonian

Probable Drive Mechanism: Water drive.

REPEAT

County: Carter

Discovery Well:

Name: Ohio Oil, Govt. No. 1

Location: Lot 4, Sec. 4, T. 1S., R. 62E.

Date Completed: March 27, 1956

Total Depth: 9362'

Initial Potential: 186 BOPD, 2% water

Deepest Well: Above well. Winnipeg (Ordovician)

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic rea-

sons. Field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 1

Type of Trap: Unknown

Productive Formations: Red River (Ordovician)

RICHEY

County: Dawson and McCone

Discovery Well:

Name: Shell, NP No. 11-9

Location: SE NW NW Sec. 19, T. 23N., R. 50E.

Date Completed: November 29, 1951

Total Depth: 10,518'

Initial Potential: 1656 BOPD, 408 BWPD, 32/64" ck.

Deepest Well: Above well. Ordovician.

Spacing Regulations:

80 acre spacing, permitted wells in the NW¼ and SE¼ of each quarter section, 75' tolerance for topographic reasons. Field delineated by Order No. 21-55.

Special Field Rules:

State-wide rules

No. Producing Wells: 12

Type of Trap: Structural

Productive Formations: Charles (Mississippian)

Probable Drive Mechanism: Water drive

Water Disposal: Part of the produced water in this field is being injected into the Dakota formation. Cumulative injections to October 1, 1960 were about 2,075,000 barrels. An average of 725 BWPD was injected during the month of September, 1960.

RICHEY - SOUTHWEST

County: McCone
Discovery Well:

Name: Shell, NP No. 22-25B

Locaton: SE NW Sec. 25, T. 22N., R. 48E.

Date Completed: 1952 Total Depth: 10,188' Initial Potential: 51 BOPD

Deepest Well: Above well. Winnipeg (Ordovician)

Spacing Regulations:

80 acre spacing permitted wells in the NE¼ and SW¼ of each quarter section, 75′ tolerance for topographic reasons. Field delineated by Order No. 22-55.

Special Field Rules:

State-wide rules.

No. Producing Wells: 2

Type of Trap: Structural

Productive Formations: Interlake (Silurian); Dawson Bay (Devonian)

Probable Drive Mechanism: Depletion drive.

RUDYARD

County: Hill

Discovery Well:

Name: Texaco, Anderson No. 1

Location: SE SW Sec. 27, T. 34N., R. 9E. Date Completed: December 9, 1955

Total Depth: 3435'

Initial Potential: 3500 MCFGPD

Deepest Well: Texaco, R. E. Blair No. 1, NW SE Sec. 28, T. 34N., R. 9E. Pre-Cambrian. T.D. 6550'

Spacing Regulations:

640 acre spacing, permitted well in C NW $\frac{1}{4}$, 150° tolerance for topographic reasons. Field delineated by Order No. 2-58.

Special Field Rules:

State-wide rules.

No. Producing Wells: Shut-in

Type of Trap: Structural

Productive Formations: Sawtooth (Jurassic)

Probable Drive Mechanism: Volumetric.

SAND CREEK

County: Dawson

Discovery Well:

Name: Texaco, Guelff No. 1

Location: SE NE Sec. 4, T. 15N., R. 54E.

Date Completed: March 8, 1959

Total Depth: 9684'

Initial Potential: 408 BOPD

Deepest Well: Above well. Red River (Ordovician)

Spacing Regulations:

80 acre spacing, permitted wells in the NW¼ and SE¼ of each quarter section, 150′ tolerance for topographic reasons. Field delineated by Order No. 16-59.

Special Field Rules:

State-wide rules.

No. Producing Wells: 6

Type of Trap: Structural

Productive Formations: Interlake (Silurian); Red River (Devonian)

SIDNEY

County: Richland

Discovery Well:

Name: Wendell C. Flynn, Beagle Land & Livestock Co. No. 1

Location: SW SW Sec. 17, T. 23N., R. 59E.

Date Completed: September 11, 1958

Total Depth: 13,135'

Initial Potential: 50 BOPD

Deepest Well: Above well. Winnipeg (Devonian)

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic rea-

sons. Field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 2

Type of Trap: Unknown

Productive Formations: Mission Canyon (Mississippian)

Probable Drive Mechanism: Water drive.

SNYDER

County: Big Horn

Discovery Well:

Name: George Greer, Kendrick No. 2

Location: NE NW NW Sec. 6, T. 1S., R. 35E.

Date Completed: October 4, 1952

Total Depth: 4588'

Initial Potential: 150 BOPD

Deepest Well: George Greer, Kendrick No. 3. Sec. 6, T. 1S., R. 35E. Winnipeg (Ordovician). T.D.

68081

Spacing Regulations:

330' from quarter-quarter section line, 1320' between wells, 75' tolerance for topographic rea-

sons. Field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 4

Type of Trap: Structural

Productive Formations: Tensleep (Pennsylvanian)

SOAP CREEK

County: Big Horn

Discovery Well:

Name: Western States Oil & Gas Co., Tribal No. 1

Location: Approx. center Section 34, T. 6S., R. 32E.

Date Completed: February 11, 1921

Total Depth: 1966'

Initial Potential: 200 BOPD

Deepest Well: Inland Empire, Tribal 52-34. Sec. 34, T. 6S., R. 32E. Pre-Cambrian. T.D. 4470'

Spacing Regulations:

Center of 10 acres, 100' tolerance for topographic reasons. Delineated by Order No. 26-60.

Special Field Rules:

State-wide rules.

No. Producing Wells: 17

Type of Trap: Structural

Productive Formations: Tensleep, Amsden (Pennsylvanian); Madison (Mississippian)

Probable Drive Mechanism: Water drive.

STENSVAD

County: Musselshell and Rosebud

Discovery Well:

Name: Honolulu, Stensvad No. 11-9

Location: NE SE Sec. 11, T. 11N., R. 31E.

Date Completed: December 20, 1958

Total Depth: 5516'

Initial Potential: 448 BOPD

Spacing Regulations:

Center of 40 acres, 200' tolerance for topographic reasons. Delineated by Orders No. 2-59, 22-59, 7-60.

Special Field Rules:

State-wide rules.

No. Producing Wells: 24

Type of Trap: Stratigraphic

Productive Formations: Tyler (Mississippian)

Probable Drive Mechanism: Depletion drive

Secondary Recovery: The operators in this field are in the process of forming a unit in order to ini-

tiate water flood operations.

SUMATRA

County: Rosebud

Discovery Well:

Name: Farmers Union, Sawyer No. 1

Location: NE SW Sec. 26, T. 11N., R. 32E.

Date Completed: October 8, 1950

Total Depth: 5277'

Initial Potential: 50 BOPD

Deepest Well: Texas, Horgen No. 1. Sec. 13, T. 11N., R. 32E. Kibbey (Mississippian). T.D. 5657'

Spacing Regulations:

Center of 40 acres, tolerance at Commission's discretion. Delineated by Order No. 14-58.

Special Field Rules:

State-wide rules.

No. Producing Wells: 88

Type of Trap: Stratigraphic

Productive Formations: Amsden (Pennsylvanian); Tyler (Mississippian)

Probable Drive Mechanism: Depletion drive

Water Disposal: A part of the produced water is injected into the Amsden formation. A total of about 161,000 barrels had been injected to October 1, 1960. Average September, 1960 injections were 428 BWPD at 600 psig.

TULE CREEK

County: Roosevelt

Discovery Well:

Name: Murphy, Sletvold No. 1

Location: SE SE Sec. 18, T. 30 N., R. 48E.

Date Completed: October 27, 1960

Total Depth: 8478'

Initial Potential: 476 BOPD, 14/64" ck.

Deepest Well: Above well. Dawson Bay (Devonian)

Spacing Regulations:

330' from boundary of quarter-quarter section, and 1320' between wells. 75' tolerance for topographic reasons. Field not delineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 2

Type of Trap: Unknown

- / F - -- I

Productive Formations: Nisku (Devonian)

Probable Drive Mechanism: Unknown.

UTOPIA

County: Liberty

Discovery Well:

Name: Texaco, State M-1094

Location: NW SE SE Sec. 16, T. 33N., R. 4E.

Date Completed: October 5, 1943

Total Depth: 2579'

Initial Potential: 15 BOPD (Field produces gas)

Deepest Well: Texaco, Laas No. 2. Sec. 14, T. 33N., R. 4E. Cambrian. T.D. 4593'

Spacing Regulations:

1320' from lease line, 3700' between wells, 75' tolerance for topographic reasons. Field not de-

lineated.

Special Field Rules:

State-wide rules.

No. Producing Wells: 7

Type of Trap: Structural

Productive Formations: Sawtooth (Jurassic); Madison (Mississippian); Jefferson (Devonian)

Probable Drive Mechanism: Unknown.

WHITLASH

County: Toole and Liberty

Discovery Well:

Name: Montana-Canadian Oil, E. Brown No. 1

Location: SE NE NW Sec. 19, T. 37N., R. 4E.

Date Completed: November, 1918

Total Depth: 2730'

Initial Potential: 15,000 MCFGPD

Deepest Well: Union Oil, Mahoney No. 1. Sec. 22, T. 37N., R. 4E. Cambrian. T.D. 4068'

Spacing Regulations:

330' from quarter-quarter section line, 650' between wells, 75' tolerance for topographic rea-

sons. Field delineated by Order No. 16-54.

Special Field Rules:

State-wide rules.

No. Producing Wells: 42 Gas; 27 Oil

Type of Trap: Combination stratigraphic and structural

Productive Formations: Blackleaf and Bow Island (Cretaceous); Kootenai-Sunburst-Swift-Sawtooth

(Cretaceous); Madison (Mississippian)

Probable Drive Mechanism: Volumetric.

WILLS CREEK

County: Fallon and Wibaux

Wills Creek is a non-unitized extension of the Cabin Creek Field lying on the east flank of the Cedar Creek Anticline.

WOLF SPRINGS

County: Yellowstone

Discovery Well:

Name: Atlantic, C. S. Horton No. 18-1

Location: SE SW Sec. 18, T. 7N., R. 32E.

Date Completed: July 31, 1955

Total Depth: 8442'

Initial Potential: 370 BOPD

Deepest Well: Above well. Cambrian.

Spacing Regulations:

80 acre spacing, permitted wells in the NW and SE1/4, 75' tolerance for topographic reasons.

Delineated by Order No. 9-59.

Special Field Rules:

State-wide rules.

No. Producing Wells: 19

Type of Trap: Structural

Productive Formations: Amsden (Pennsylvanian)

Probable Drive Mechanism: Water drive.

WOODROW

County: Dawson

Discovery Well:

Name: Texaco, NP "G" (NCT-8) No. 1

Location: NE NE Sec. 7, T. 16 N., R. 54E.

Date Completed: August 25, 1952

Total Depth: 8124'

Initial Potential: 114 BOPD, 20% water

Deepest Well: Texaco, Elpel No. 1. Winnipeg (Ordovician). T.D. 10,370'

Spacing Regulations:

160 acre spacing, permitted well in the SW1/4 in Red River, and the NE1/4 in Charles, 75' toler-

ance for topographic reasons. Delineated by Orders No. 25-55 and 24-55.

Special Field Rules:

State-wide rules.

No. Producing Wells: 2

Type of Trap: Structural

Productive Formations: Charles (Mississippian)

STATE OF MONTANA -

Line	Field for Bool)	County	Year Discovered	Production Formation	Approx. Depth	A.P.I. Gravity	Volume Factor	Net Pour Pay sit
No	Field (or Pool) Ash Creek	Big Horn	1952	Shannon (U. Cret.)	4500	34	1.045	14 22
2	Bannatyne	Teton	1927	Swift (U. Jur.)	1450	27	1.05	39 15
3	Bears Den	Liberty	1924	Sumburst (L. Cret.)	2300	39	1.08	20 12
4	Belfry	Carbon	1958	Fuson (L. Cret.)	9844	38	1.60	20 11.
5	Big Wall	Musselshell	1948 1953	Tyler (U. Miss.) Amsden (L. Penn.)	3000 2500	<u>31</u> 19	1.02	17 16
6 7	Big Wall Blackfoot	Musselshell Glacier	1955	Madison (Miss.)	3550	25	1.15	8 14
8	Blackfoot	Glacier	1955	Cut Bank (L. Cret.)	3500	30	1.11	15 15
9	Border	Toole	1929	Cut Bank (L. Cret.)	2400	31	1,08	22 15
10	Bowes	Blaine	1949	Sawtooth (M. Jur.)	3250	19	1.02	37 11.
11	Bredette-North	Roosevelt, Daniels	1956	Charles (Miss.) Mission Canyon (Miss.)	6720 9744	38 32	1.24	24 6 92 4
12 13	Brorson Cabin Creek	Richland Fallon	195 4 1953	Siluro-Ordovician	8400	33	1.20	50 13
14	Cabin Creek	Fallon	1956	Mission Canyon (Miss.)	7300	33	1.13	25 11
15	Cat Creek (Antelope-Mosby)	Petroleum-Garfield	1920	Kootenai (L. Cret.)	1225	52	1,10	10 21
16	Cat Creek (West Dome)	Petroleum-Garfield	1920	Kootenai (L. Cret.)	1100	52	1.10	51 21
17	Cat Creek	Petroleum-Garfield	1945	Morrison (U. Jur.)	1600 1750	52	1.10	6 22 25 18
18	Cat Creek	Petroleum-Garfield	1945 1954	Swift (U. Jur.) Frontier (U. Cret.)	6730	52 43	1,10 1,16	28 14
19 20	Clarks Fork Clarks Fork-North	Carbon Carbon	1956	Lakota (L. Cret.)	8940	50	1.92	19 19
21	Clarks Fork-North	Carbon	1957	Dakota (L. Cret.)	8750	56	1.92	1) 20
22	Cupton	Fallon	1955	Red River (U. Ord.)	9800	33	1.50	33 13
23	Cut Bank	Glacier-Toole	1932	Kootenal (L. Cret.)	2900	38	1.148	16 15
24	Cut Bank	Glacier-Toole	1945	Madison (Miss.)	3000 9850	39 42	1.10	10 14 112 6.
25	Deer Creek	Dawson Dawson	1952 1952	Red River (U. Ord.) Interlake (SII.)	9440	42	1,22	71 7
26 27	Deer Creek Delphia	Dawson Musselshell	1952	Amsden (L. Penn.)	6290	35	1.15	12 6
28	Devils Basin	Musselshell	1919	Heath (U. Miss.)	1200	24	1.02	11 17
29	Dry Creek	Carbon	1930	Greybull (L. Cret.)	5600	52	1.60	12 12
30	Dry Creek	Carbon	1932	Pryor (L. Cret.)	5800 8000	- 52	1,12	30 12 30 11,
31	Dwyer	Sheridan Carbon	1960 1915	Mission Canyon (Miss.) Frontier (U. Cret.)	1200	33 45	1.16	30 21
32 33	Eik Basin Eik Basin	Carbon Carbon	1942	Embar-Tensieep (PermPenn.)	5000	29	1.1566	
33 34	Elk Basin	Carbon	1946	Madison (Miss.)	5300	28	1.123	224 12
35	Elk Basin-Northwest	Carbon	1947	Frontier (U. Cret.)	3375	47	1,287	28 19
36	Elk Basin-Northwest	Carbon	1947	Madison (Miss.)	6215	35	1.075	124 11.
37	Fertile Prairie	Fallon	1954	Red River (Ord.)	9200 2700	33 27	1.25 1.018	30 5. 29 19
38	Francie	Carbon Musselshell	1928 1943	Tensleep (Penn.) Amsden (L. Penn.)	6000	34	1.07	18 10
3 9 40	Gage Gas City	Dawson	1955	Red River (U. Ord.)	8700	38	1.284	25
41	Glendive	Dawson	1952	Stony MtnRed River (U. Ord.)	8700	38	1.25	147 6.
42	Gypsy Basin	Pondera	1958	Madison (Miss.)	3150			
43	Hibbard	Rosebud	1960	Amsden (Perm.)	4810 3600	31 22	1.05	12 19 9 17
44	I vanhoe	Musselshell	1960	Amsden (Perm.) Morrison (U <u>. Jur.)</u>	2800	32 30	1.08 1.08	10 15
45 46	I vanhoe	Musselshell Musselshell	1953 1956	Tyler (U. Miss.)	4050	33	1.08	29 1
46 47	Yannoe Keg Coulee	Musselshell	1960	Tyler (U. Miss.)	4550	32	1.15	30 19
48	Kevin-Sunburst	Toole	1922	Madison (Miss.)	1500	32	1.083	6.5 20
49	Little Beaver	Fallon	1952	Red River (U. Ord.)	8300	29	1.16	37 12
50	Little Beaver-East	Fallon	1954	Red River (U. Ord.) Greybull (L. Cret.)	8300 3650	30 10	1,20	29 12. 56 10
51	Mackay Dome	Carbon-Stillwater Musselshell	1960 1948	Tyler (U. Miss.)	4250	34	1.00	25 12
52 53	Melstone Monarch	Musselsnell Fallon	1958	Interlake-Red River (SilU.Ord.)	8400	32	1.1	3) 7
54	Mosser	Yellowstone	1936	Dakota (L. Cret.)	1000	22	1.0}	15.4 23.
. śś	Outlook	Sheridan	1956	Siluro-Devonian	9000	38	1,12	20
55 56	Dutlook	Sheridan	1957	Red River (U. Ord.)	9900 8800	33	1.21	35 { 40 11
57	Penne I	Fallon Fallon	1955 1957	Siluro-Ordovician Mission Canyon (Miss.)	7000	33 31	1.135	38 3.
58 59	Pennel Pennel	Fallon Fallon	1957	Lodgepole (Hiss.)	7500	36	1.13	30
60	Pine Dawson, w	libaux, Fallon, Prairie	1952	Siluro-Ordovician	8400	34	1.17	32 11
61	Pondera	Pondera-Teton	1927	Madison (Miss.)	2100	34	1.20	15 16
62	Poplar-East	Roosevelt	1952	Charles-Mission Canyon (Miss.)	5550 (260	40	1.10	25 11
63	Poplar-Northwest	Roosevelt	1952	Charles-Mission Canyon (Miss.)	6260 4400	40 33	1.10 1.09	16 10. 28 11
64	Ragged Point	Musselshell Musselshell	1947 1956	Kibbey (U. Miss.) Tyler (U. Miss.)	3580	33 32	1.10	14 14
65 66	Ragged Point Reagan	Musselshell Glacier	1947	Madison (Miss.)	3700	38	1.10	11 1
67	Red Creek	Glacier	1958	Kootenai (L. Cret.)	2600	33	1.17	20 19
68	Red Creek	Glacier	1958	Madison (Miss.)	2750	28	1.10	18 1
69	Red Stane	Sheridan	1958	Winnipegosis (Dev.)	9400 8610	39	1.10	10
70	Repeat	Carter	1956	Red River (U. Ord.) Charles (Miss.)	8610 7000	23 39	1.024	25 10 25
71	Richey Richey-Southwest	Dawson-McCone McCone	1951 1952	Interlake (Sil.)	9200	48	1.37	21
72 73	Richey-Southwest Richey-Southwest	McCone McCone	1952	Dawson Bay (Dev.)	9130	48	1.37	6
73 74	Sand Creek	Dawson	1959	interlake (Sil.)	8950	39	1.30	20 1
75	Sand Creek	Dawson	1959	Red River (U. Ord.)	9400	39	1,30	15 10
76	Sidney	Richland	1958	Mission Canyon (Miss.)	9000	32	1.50	30
77	Snyder	Big Horn	1952	Tensleep (Penn.)	4550 1 <i>9</i> 00	21 20	1.16 1.045	12 20 20 1
78	Soap Creek	Big Horn	1920 1958	Tensteep-Amsden-Madison Tyler (U. Miss.)	5500	20 33	1.171	26.25
79 80	Stensvad Sumatra	Musselshell-Rosebud Rosebud	1949	Tyler (U. Miss.)	4500	32	1,16	30 18
81	Sumatra	Rosebud	1955	Amsden (L. Penn.)	4000	29	1.10	8 20
82	Tule Creek	Roosevelt	1960	Nisku (Dev.)	7700	45	1.30	30 2
83	Whitlash	Liberty	1927	(L. Cret.)	1400	38	1.13	15 10
84	Wills Creek	Fallon	1957	S11-Ordoviclan	8500	32	1,20	70 1:
85	Wolf Springs	Yellows tone	1955	Amsden (L., Penn.)	6200	30	1.0745	10 <u>.5 5</u> 19 17

1A - SUMMARY OF OIL FIELDS

1 /	١.		30	IVI IVI /-	ALV I										
	A		A	0=:=!=>1	Productive	Original	Estimated Primary	Original	Cumulative	Remaining Primary	1960 P	roduction	Origi Recove		
	Avg. Ne t	Poro-	Avg. Connate	Original Oil	Area	1 10	Recovery	Primary	Production	Reserves 12-31-60	Total	Avg. Daily	Reser Bbls./	ves	Line
me Or	Pay Ft.	sity %	₩ater %	in Place Bbls/Acre	12-31-60 Acres	In Place 1000 Bbls.	Factor %	Reserves 1000 Bbls.	12-31-60 1000 Bbls	1000 8bls.	Bb1s.	BOPD	Acre	Acre Ft.	No.
+5	14	22	35	14,855	160	2,377	26	618	31]	307	30,507	83	3,865	276	1
5 B	39 20	15 12	43 35	24,635 11,205	1 70 1 60	4,188 1,793	5 10	209 179	114 104	95 75	15,568 11,184	42 31	1,230 1,120	32 56	2 3
5		11.25	17	9,049	411	3,719	20	744	57	687	49,622	135	1,810 5,120	91 233	4
<u>2</u> 35	22 17	17 16	40 35	17.066 13,647	900 280	15,359 3,821	30 27	1,032	3,668	1,972	263,556	720	3,685	217	6
5	8	14	40	4,533	480 160	2,176	20 25	435 \ 409 }	415	429	122,105	334	906 2,556	113 170	7 8
B	15 22	15 15	35 30	10,221 16,593	300	1,635 4,978	23	1,145	1,087	58	6,132	17	3,816	173	9 10
2	37 24	11.7	<u>31</u>	22.719 4,234	5.282 640	120,000 2,710	5.75 20	6,900 542	<u>5,636</u> 464	1,264 78	279,909 28,700	765 78	1,306 847	35 35	11
5	92	4	40	41,419	320	3,654	15 18	548 35,263)	312	236	25,920	71	1,712 5,294	19 106	12 13
3	50 25	13 11	30 30	29,415 13,215	6,660 2,179	195,904 28,795	20	5.7591	19,397	21,625	4,469,974	12,213	2,642	106	14
2	10 51	21	19 19	11,997 61,186	200 920	2,399 56,291	22 30	528 16,887					2,640 18,351	264 360	15 16
ŏ	6	22	40	5,586	120	670	32	214	19,569	3,087	180,760	493	1,783 5,713	297 229	17 18
D 6	25 28	18 14	40 43	19,043 14,941	880 40	16,758 598	30 12	5,027) 72	64	8	634	2	1,800	64	19
2	19 11	19 20	39 30	8,896 6,222	400 80	3,558 498	35 25	1,245	968	402	145,857	398	3,112 1,563	165	20
Ď.	33	13	35	14,421	160	2,307	5	115	111	4	11,403	31	718 2,003	22 125	22 23
4-8 Or	16 10	15	35 30	10,542 6,912	53,050 4,010	559,253 27,717	19 27	106,258) 7,484	91,287	22,455	2,077,933	5,677	1,866	187	24
<u>1</u> 2	71	6.7	35 35	31,270 20,543	480 400	15,010 8,217		1,201 772	1,366	607	168,257	460	2,502 1,930	22	25 26
5	12	6.5	30	3,683	440	1,621	20	3 2 4 61	209 36	115 25	34,658 0	95 0	736 508	61 46	27 28
2	11 12	17 12	64 22	5,120 5,445	120 1,700	614 9,257	10 20	1,851)	-	1,429	33,403	91	1,089	91	29
<u>0</u>	30	12	25 55	17,455	1,000	7,455	15	3,491/ 1,059	3,913 92	967	91,890	256	3,491	116 55	30 31
6	30 30	21	20	33,702	120	4,044	54	2 184	-				1,820 44,798	61 361	32 33
566 23	124 224	10.5	10 9	78,593 168,975	1,376 920	108,144 155,474	57 21.5	61 642 33 427	34,902	69,052	2,718,419	7,427	36,333	162	34
2 3 8 7 7 5	28	19	30	22,448 83,036	120 382	2,694 31,720	25 19	674 6,027				_	5,616 15,777	200 70	35 36
5	124 30	11.6 5.6	20 40	6,255	320	2,002	7.5	150	130	20	1,039	3	468 8,830	16 305	37 38
18	29 18	19 10	16 48	35,272 6,786	80 320	2,822 2,172	25 25	706 543	462 503	244 40	21,862 14,250	60 39	1,696	94	39
B4	25	9	35	8,836	1,305	11,531 40,086	18 20	2,076 8,017	1,411 4,786	665 3,231	186,750 455,762	1,248	1,590 7,708	64 52	40
5	147	6.5	35	38,544 	1,040 160	300	25	75	19	56	8,283	23	469	181	42 43
5 8	12 9	15 17	35 40	8,644 6,594	40 110	346 7 2 5	25 35	87 254	47	40	47,201	154	2,175 2,309	265	цЦ
<u>8</u> 8	10	15	35	7.004	80 450	560 11,249	18 25	100 2,812	1,581	1,585	353,062	965	6,249	125	45
5	29 30	15 15	20 25	24,997 23,071	560	12,920	20	2,584	233	2,351	232,871	843	4,614	154 280	47 48
5 83 6	6.5 37	20 12	35 35	6,053 19,299	40,205 1,910	243,361 36,861	30 10	73,008 3,686	65,523 1,327	7,485 2,359	743,936 258,149	2,033 605	1,816 1,949	53	49
ŏ	29	12.5	35 20	15,233	728 80	11,090 2,780	10 5	1,109 139	532 3	577 136	271,207 2,596	740	1,520	52 31	50 51
9	56 25	10 12	30	34,755 14,945	360	5,380	23.4	1,259	1,195	64	36,121	99	3,497	140	52
1	31 15 4	7 23.6	35 30	9,946 19,540	2,080 96	20,688 1,876	† 5 † 8	3,103 338	512 158	2, 591 180	395,352 6,181	1,080 17	1,492 3,521	48 229	53 54
<u>2</u>	20	88	30	7,758	1.760	13,652 790	21 20	2,867 158	1,953	1,072	606,410	1,651 —	1,629	81 56	55 56
	35 40	8 11	45 35	9,875 19,548	2,640	51,606	10	5,161		- /	-0- ///		1,954	49	57 58
35 0	38 30	3.4 8	30 35	6,378 10,709	80 560	510 5,997	15 20	1,199	2,808	3,629	585,666	1,600	963 2,141	2 5 71	59
3 7 0	32	11.5	30	17,078	13.488	230.348	20 35	46,070 20,684	26,271 15,102	19,799 5,582	5,112,014 504,829	13,932	3.415 3.747	107 250	60 61
O	15 25	16 11	31 30	10,706 13,576	5,5 20 17,909	59,097 243,133	30	72,940	27,205	45,735	3,207,394	8,763	4,073	163	62
o 9	16 28	10.3 11	45 40	6,393 13,152	400 140	2,557 1,841	15 27	384 497)	241	143	24,748	67 412	960 3,550	60 1 2 8	63 64
0	14	14.5	35	9,307	340	3,164	30 30	949 } 5,885	966 2,592	3,293	154,373	522	2,785 1,950	199 178	65 66
7	11 20	12 19.2	30 25	6,517 19,0 94	3,010 760	19,616 14,511	25	3,628	539	4,836	343,971	940	4,780	242	67
7 0 0	18	13 7	30 45	11,553 2,715	840 80	9,705 217	18 15	1,747∮ 33	16	17	8,305	23	2,080 412	115 41	68 69
24	25	10	30	13,258	160	2,122 8,486	16	340 1,952	169 1,453	171 499	38,985 195,463	106 534	4,250 2,080	85 83	70 71
03 7	25 21	8 9	30 35	9,028 6,955	940 300	2,087	23 35	730)	599	356	79,206	216	2,435	116	72
7	6 20	9	30 40	2,140 7,160	300 680	642 4,869	35 15	225) 730)	488			901	750 1,075	125 54	73 74
0	15	10	40	5,370	240	1,289	10	129 <u>/</u>	39	371	330,009 18,436	50	538 744	36 25	75 76
6	30 12	4 20	40 35	3,7 24 10,431	160 149	596 1,554	20 20	119 311	266	45	20,926	57	2,085	† 74	77
45	20	15 15 14	35 20	14,488 19,465	410 1,382	5,940 26,900	22 25	1,307 6,725	1,004 3,046	303 3,679	64,045 1,941,645	175 5,305	3,185 4,860	159 185	78 79
71 6 0	30	18,5	35	24,123	3,160	76,244	25	19,061)	11,337	8,091	2,144,939	5,860 —	6,030 1,835	201	80 81
0	8 30	20 25	35 25	7,335 33,565	200 320	1,467 10,741	25 30	367 <i>§</i> 3,222	31	3,191	31,312	482	10,100	336	82
3	15 70	16	20 25	13,180 40,730	1,100 800	14,498 32,584	15 20	2,175 6,517	1,174 1,003	1,001 5,514	25,698 408,242	70 1,115	1,9 8 0 8,150	132 116	83 84
745	10.5	12 5.75	23	3,356	4,330	14,531	20	2,906	2,492	414	370,236 23,562	1,011	670 1,143	64 60	<u>85</u>
5	19	17.3	35	11,433	160	1,829	10	183	139			U -1	(517)	00	~
					197,982	2,662,341		618,383	<u>363,437</u>	<u> 254,946</u>	30,231,760				

23.22 82,665 3,123 98.5

MONTANA

OIL AND GAS FIELDS. PIPELINES AND REFINERIES 1960

THE OIL AND GAS CONSERVATION COMMISSION OF THE STATE OF MONTANA

ERA	PERIOD		SOUTHWESTERN MONTANA	CRAZY MTN. Basin	BIG HORN BASIN		SOUTH-CENTRAL MONTANA			
CENOZOIC			BEAVERHEAD	TONGUE RIVER LEBO	FORT UNION					
				HELL CREEK	LANCE		HELL CREEK			
				HELL CREEK			LENNEP			
				. 	MEETEETSE		a. O BEARPAW			
				🖁 ⊱			40	-		
		UPPER		A STANS	MESA VERDE		JUDITH RIVER			
	CRETACEOUS			CLAGGETT			CLAGGETT EAGLE VIRGELLE	‡-DRY CI		
	CRETACEOUS			TELEGRAPH CREEK	CODY SHALE		TELEGRAPH CREEK	1		
1							NIOBRARA CARLILE	1		
MESOZOIC				FRONTIER	FRONTIER	ELK BASIN, CLARKS FORK, N.W. ELK BASIN	GREENHORN E	☆ DRY CR		
			MONTANA-COLORADO GROUPS	MOWRY MUDDY	THERMOP- MUDDY SE		MOWRY THERM Muddy 19 OPOLIS	1		
		LOWER			Basal Colo, silt	* NORTH CLARKS FORK	Bosal Cata sill	• MOSSEI		
			KODTENAI	DAKOTA KOOTÉNAI	CLOVERLY GROUP LAKOTA SS CLOVERLY GRAYBUIFUSON LAKOTA		DAKOTA Graybull as - FUSON PRYOR CONGLOMERATE	DRY CR		
			MORRISON	MORRISON	WORNISON	NORTH CLARKS FORK	MORRISON	-		
		UPPER	SWIFT DESCRIPTIONS	SWIFT	UPPER SUNDANCE		SWIFT B]		
!		UPPER	RIERDON	RIERDON	LOWER SUNDANCE		RIERDON]		
	JURASSIC		SAWTOOTH	PIPER	GYPSUM SPRING		PIPER FIRMSON			
		MIDDLE					Tompico			
] [LOWER			Popo Agia mbr					
1	TRIASSIC		THAYNES WOODSIDE	CHUGWATER	CHUGWATER Red Peak mbr		CHUGWATER			
			DINWOODY	DINWOODY	DINWOODY		DINWOODY			
	PERMIAN		PHOSPHORIA	PHOSPHORIA	PHOSPHORIA		PHOSPHORIA			
1 1										
	PENNSYLVANIAN		QUADRANT	TENSLEEP	TENSLEEP	ELK BASIN, FRANNIE	TENSLEEP	SNYDE		
			AMSDEN	AMSDEN ALASKA BENCH	AMSDEN DARWIN SS		AMSDEN	● SOAP		
			BRAZER	TYLER BIG SNOWY						
1	MISSISSIPPIAN		MADISON	MADISON	NADI5ON	● ELK BASIN, NW.ELK BASIN	MADISON	• SOAP		
]			SAPPINGTON	SAPPINGTON	itatistariosariosariosariosari					
}			THREE FORKS	THREE FORKS	THREE FORKS		THREE FORKS	<u>-</u>		
			JEFFERSON	JEFFERSON	JEFFERSON		JEFFERSON	1		
		UPPER			TEFFERSON					
PALEOZOIC	DEVONIAN	EVONIAN	MAYWOOD	MAYWOOD						
		MIDDLE								
	SILURIAN	<u> </u>								
								<u> </u>		
	ORDOVICIAN		BIG HORN	BIG HORN	LEIGH BIE HORN			1		
			CONTRACTOR AND		LANDER SS		BIG HORN			
		UPPER	RED LIGHT	GROVE CREEK SNOWY RANGE			GROVE CREEK SNOWY RANGE			
	CAMBRIAN		HASMARK PARK MEAGHER	PILGRIM PARK MEAGMER	GALLATIN UPPER SH GROS VENTRE DEATH CANYON LOWER SH		PILGRIM PARK MEAGHER	1		
		MIDDLE	SILVER HILL WOLSEY FLATHEAD	WOLSEY FLATHEAD	VENTRE LOWER SH FLATHEAD		#OLSEY FLATHEAD			
+		LOWER								
]				BELT						
PROTEROZOIC	PRE- CAMBRIAN		BELT							
			i							
						1				
ARCHEOZOIC					***********	METAMORPHIC		1		

GENERALIZED STRATIGRAPHIC CORRELATION CHART

SHOWING PRODUCING HORIZONS - MONTANA OIL AND GAS FIELDS, 1960

		SHOWING PRO	DUCING HORIZONS — N	IUNIANA UIL	AND GAS FIELDS, 1960		
PTH-CENTRAL .		CENTRAL MONTANA		SWEETGRASS ARCH		NORTH-CENTRAL MONTANA	
		FORT UNION					
HELL CREEK		TULLOCK HELL CREEK		WILLOW CREEK ST MARY RIVER		TULLOCK HELL CREEK	
		FOX HILLS		HORSE THIEF		FOX HILLS	
LENNEP		l ————				7 QX MILES	
BEARPAW		BEARPAW		BEARPAW		BEARPAW	
JUDITH RIVER		JUDITH RIVER		TWO MEDICINE		JUDITH RIVER	
CLAGGETT	# DRY CREEK	EAGLE VIRGELLE		AONTA		CLAGGETT	S BOWES, BOX ELDER
FELEGRAPH CREEK	7 2 0	TELEGRAPH CREEK		VINGELLE TELEGRAPH CREEK		TELEGRAPH CREEK	T
NICERARA	·	NIOBRARA				NIOBRARA	
GREENHORN 5	Ø DRY CREEK, HARDIN	GREENHORN Mostly as		1ALE		CARLILE OF GREENHORN MORBY SE	
MOWRY	A SAL CACCA, IMILIA	Mosby 45		o Mowry		BELLE FOURCHE MOWRY	
		THERMOPOLIS		(C) 1/2 0 =	∰ WHITLASH	Top lelend 44	☆ Bowcoin
CLIS Moddy vs	-	Bosol Cole sill		Basal Colo Silt	☆ DEVON	Bosol Colo self	
DAKOTA I wobull as ~ FUSON	MOSSER DOME DRY CREEK, MACKAY DOME	KODTENAL	CAT CREEK	KOOTENAI Sunbaret	CUT BANK, KEVIN-SUNBURST, FLAT COULEE BLACKFOOT, BORDER, CUT BANK, RED CREEK, WHITLASH BEARS OEN, KEITH, WHITLASH BEARS DEN, KEVIN-SUNBURST, WHITLASH	DAKOTA KODTENAI	
y bull 69 - FUSON O R CONGLOMERATE	DRY CRÉEK		BIG COULEE CAT CHEEK, TVANNOE	Çut Bank	BEARS DEN, KEITH, WHITLASH BEARS DEN, KEVIN-SUNBURST, WHITLASH		
MORRISON		MORRISON Sail	BIG COULEE	MORRISON SWIFT RIBBER	BANNATYNE, KEVIN-SUNBURST, WHITLASH	MORRISON	
		1		§	2 23mm-ring, activity supposed, #filless	§ management	
RIERDON		RIERDON		RIERDON		RIERDON	
PPER Firemoon		Piper Firemoon		SAWTOOTH	KEVIN-SUNBURST ★ WHITLASH	Piper FIREMON	● BOWES
Yampiga		Tampica				NESSON	
CHUGWATER DINWOODY							
PHOSPHORIA							
TENSLEEP	SNYDER, SOAP CREEK	AMSDEN	BIG WALL, DELPHIA, GAGE, HIBBARD, SUMATRA, WOLF SPRINGS				
AMSDEN	SOAP CREEK	**************************************	BIG WALL, IVANHOE, KEG COULEE, MECSTONE RAGGED POINT, STENSVAD, SUMATRA DEVICE BASIN				· · · · · · · -
		BIG SNOWY HEATH GROUP KIBBEY	DEVILS BASIN RAGGED POINT				
	SOAP CREEK	Ze CHARLES			BANNATYNE, BLACKFOOT, CUT BANK, KEVIN-SUMBURST REAGAN, RED CREEK, GYPSY BASIN, PONDERA	CHARLES MISSION CANYON	
MADISON	John Sheek	MISSION CANYON LODGEPOLE		MADISON	KEITH, WHITLASH	LODGE POLE BAKKEN	
THREE FORKS				THRÉÉ FORKS FOTLATCH NISKU		THREE FORKS	
JEFFERSON		JEFFERSON		DUPÉROW		NISKU DUPÉROW	
.		MAYWOOD		SOURIS RIVER		SOURIS RIVER	
						DAWSON BAY ELK POINT GROUP	}
						BIOGRAPHICA CONTRACTOR	
						INTERLAKE	
						STONY MT	
							
BIG HORN		RED RIVER				REO RIVER]
		LOWER ORDOVICIAN				MINNEPES	
GROVE CREEK S NOWY RANGE PILGRIM		PILGRIM		DEVILS GLEN DOL			
PARK MEAGHER		PARK MEAGHER		SWITCHBACK SHALE STEAMBOAT LS PAGODA S DEARBORN LS		CAMBRIAN	
WOLSEY FLATHEAD		WOLSEY FLATHEAD		DAMNATION S CONCON SHALE FLATHEAC			
	_			HISS.			
				OULA KINTLA GROUP ARSILLITE			
				SIYEH SHEPPARD OOL PURCELL LAVA			
		BELT		WALLACE UPPER SIYEM SPOKANE SH			
				LOWER SIYEH RAVALLI GRINNEL SH			
				GROUP APPEKUNNY OT ALTYN LS			
	AND		IGNEOUS		ROCKS]
	L	<u> </u>	<u> </u>				! -

ATION CHART

960					
	NORTH-CENTRAL MONTANA	NORTH POWDER RIVER BASIN	WILLISTON BASIN	PERIOD	ERA
	TULLOCK		TOROUG RIVER LEGO LUDLOW TULLOCK		CENOŽOIC
	HELL CREEK	HELL CREEK	HELL CREEK		
	FOX HILLS	FOX HILLS	FOX HILLS		
	a BEARPAW	LEWIS	G BEARPAW		
	9	Yeapot sa	* ·		
ļ	JUDITH RIVER	E Personen ss	JUDITH RIVER CEDAR CREEK, PLEVNA	UPPER	
	EAGLE VIRGELLE	Shannon ss ASM CREEN		CRETACEOUS	
	TELEGRAPH CREEK		TEL CREEK		MESOZOIC
ļ	NIOBRARA CARLILE	NIOBRARA CARLILE	NIOSPARA CARLILE	1	
;	GREENHORN MORDY SE BELLE FOURCHE MOWRY	GREENHORN BELLE FOURCHE MOWRT	GREENHORN BELLE FOURCHE		
	\$ BOWDOIN	NEFSY	MOWRY of Name Coll 4 as		
	Basal Colo sirt	SKULL CR Bosol Colo sitt	O Nessall st O SKULL CREEK Boso Colo sill	LOWER	
LEE EEK, WHITLASH	DAKOTAKOOTENA:	GROUP FUSON LAKOTA	DAKOTA FUSON LAKOTA		
SH	MORRISON	MORRISON	M ORRISON		+
51	ू व्यव्यवस्थान	UPPER SUNDANCE	SWIFT	UPPER	
	RIERDON	LC#ER SUMDANCE	RIERDON	, , , , , , , , , , , , , , , , , , ,	
	Piper - FRENCON Sewiceth TAMPICO	GYPSUM SPRING	BOWES Proer FIREMOON	JURASSIC	
	NESSON		TAMPICO MESSON FICARO POE	MIODLE	
				LOWER	4
1				TRIASSIC	
		CHUGWATER	SPEARFISH PERMIAN		
1		PHOSPHORIA MINNEKAHTA OPECHE	MINNEKAHTA	PERMIAN	
					-
		TENSLEEP MINNELUSA	MINNELUSA AMSDÉN	PENNSYLVANIAN	
		AMSDEN MINNELUSA Documents	1000 1 1000000		4
			ALASKA B TYLEN BIG SNOWY HEATH GROUP ATTENT A BREDETTE, POPLAR RICHEY		
WIN- SUNBURST	E CHARLES		SA MISSION CANYON BRORSON, CABIN CR. OWYER,	MISSISSIPPIAN	
HMDERA	MISSION CANYON LODGEPOLE BAKKEN	MADISON	LODGE POLE PENNEL POPLER SORE		
	BEEFE BEEFE		BAKKEN		4
	THREE FORKS		THREE FORKS NISKU TULE CREEK		
	DUPEROW	DEVONIAN	WOODSEND DUPEROW	UPPER	
	SOURIS RIVER		BEAVER- MILL LAMESOURIS RIVER DAWSON BAY	DEVONIAN	PALEOZOIC
	ELK POINT GROUP		ELK PRAIRIE EVAP POINT WINNIPEGOSIS GROUP ASHERN ### PED STONE, OUTLOOK	MIDDLE	
			GROUP ASHERN	1	
					-
	INTERLAKE	SILURIAN	INTERLAKE DEER CR. MONARCH, OUTLOOK, PEN SAND CR., SW RICHEY, CABIN CR., V	INEL, PINE SILURIAN SILURIAN	
	STONY MT		STONY UPPER GLENDIVE		
				ORDOVI ČIAN	-
	RED RIVER	BIG HORN	RED RIVER GLENDIY, LITTLE BEAVER, EAST LITTLE	ILE PRAIRIE TTLE BEAVER REPEAT	
	LOWER ORDOVICIAN	LANDER SS	WINNIPEG SAND CR. WILLS CR. YELLOWSTON		-
		GALLATIN		UPPER	
	CAMBRIAN	GROS VENTRE	CAMBRIAN	MIDDLE CAMBRIAN	
	800000000000	FLATHEAD		LOWER	
					DBOTEDO70:0
		pagagadadaadii	E+1+2+1+3+1+3+1+1+1+1+1+1+1+1+1+1+1+1+1+1	PRE-CAMBRIAN	PROTEROZOIC